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Abstract
Quantum criticality provides a means to understand the apparent non-Fermi
liquid phenomena in correlated electron systems. How to properly describe
quantum critical points (QCPs) in electronic systems has however been poorly
understood. The issues have become particularly well defined due to recent
experiments on heavy-fermion metals, in which QCPs have been explicitly
identified. In this paper, I summarize some recent theoretical work on the
subject, with an emphasis on the notion of ‘local quantum criticality’. I describe
the microscopic work based on an extended dynamical mean-field theory, as
well as Ginzburg–Landau arguments for the robustness of the local QCP beyond
the microscopics. I also present the consequences of this picture for inelastic
neutron scattering, NMR, Fermi surface properties, and the Hall coefficient,
and compare them with the available experiments. Some analogies with the
Mott transition phenomena are also noted.

1. Introduction

One basic issue for correlated electron systems concerns how electron–electron interactions
lead to non-Fermi liquid behaviour. Proximity to a quantum critical point (QCP) provides one
mechanism. Fermi liquid theory for spatial dimensions higher than one is internally consistent
when the electron–electron interactions are treated perturbatively. At a QCP, however, the
effective interactions can become very strong due to quantum critical fluctuations, opening the
door to a non-Fermi liquid critical state.

Quantum critical metals are of general interest in a variety of strongly correlated electron
systems, possibly also for high-temperature superconductors [1]. The issues are however
particularly well defined for heavy-fermion metals, for the simple reason that QCPs have been
explicitly identified. Here, the transitions are typically between a paramagnetic metal and an
antiferromagnetic metal. For instance, CeCu6−yAuy becomes magnetic when the Au doping
reaches yc ≈ 0.1 [2], stoichiometric YbRh2Si2 is fortuitously sited (TN ≈ 70 mK) close to
its QCP [3], and in the cases of CePd2Si2 and CeIn3 the Néel temperature can be suppressed
by applying pressure [4]. In the quantum critical regime, these materials do indeed show
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non-Fermi liquid properties. The electrical resistivity is linear (or close to being linear) in T ,
for as extended a temperature range as three decades [5]. The specific heat coefficient is either
singular—so the effective mass diverges in the T = 0 limit—or is finite but contains a non-
analytic dependence on temperature. There is no doubt that such non-Fermi liquid behaviour
originates from quantum critical physics, as Fermi liquid properties (constant specific heat
coefficient and/or T 2-resistivity) are recovered at low temperatures when the system is tuned
away from the QCP [2, 6–8].

Some direct clues to the nature of such metallic QCPs have come from the inelastic neutron
scattering experiments of Schröder et al [9, 10]. The frequency and temperature dependences
of the dynamical spin susceptibility are characterized by an anomalous exponent α < 1 as well
as ω/T scaling. In addition, the same anomalous exponent α is seen essentially everywhere
in the Brillouin zone. These experimental results differ in a very basic fashion from the
standard Hertz–Millis picture, which argues for a Gaussian fixed point [11]. The Gaussian
picture is formulated entirely in terms of paramagnons—the long-wavelength fluctuations of
the magnetic order parameter. The critical theory is the φ4-theory, describing the non-linear
couplings of the paramagnons. Other degrees of freedom, including fermions, are considered
to be bystanders; the primary effect of fermions is to cause a Landau damping, making the
dynamic exponent, z, larger than 1. In the antiferromagnetic case, the damping is linear in
frequency, and z = 2. For either three or two spatial dimensions (d) the effective dimension,
def f = d + z, is larger than or equal to 4, the upper critical dimension of the φ4-theory. The
fixed point is therefore Gaussian. As a result, the dynamical spin susceptibility would have to
have the mean-field form

χGaussian(q, ω) ∼ 1

(q − Q)2 − iω
(1)

where Q is the antiferromagnetic ordering wavevector.
The search for non-Gaussian quantum critical metals has proceeded along a number of

directions [12–15]. Here, I describe in some detail the work on the local QCP [12, 16–18],
which can confront the existing experiments.

2. Model and microscopic approach

We focus on the Kondo lattice Hamiltonian,

H =
∑

i j,σ

ti j c
†
iσ c jσ +

∑

i

JK Si · sc,i + 1
2

∑

i j

Ii jSi · S j . (2)

A lattice of spin- 1
2 local moments (Si ) and a conduction electron band (ciσ ) are coupled

through an antiferromagnetic Kondo exchange interaction (JK ) and an RKKY interaction
(Ii j ). The number of conduction electrons per unit cell, x , is taken to be close to but (without
loss of generality) less than 1; all the phases are metallic. Two limits of this model are
well understood [19, 20]. When the RKKY interaction is negligible, the local moments are
expected to be completely screened by the spins of the conduction electrons. The resulting
Kondo resonances turn the local moments into a part of the electronic excitations below some
energy scale E∗

loc (figure 1). In the opposite limit, the dominating RKKY interactions lead to
an antiferromagnetic metal.

To treat the dynamical competition between the RKKY and Kondo interactions, we have
applied an extended dynamical mean-field theory (EDMFT) [21, 22]. The key quantities are the
usual electron self-energy, �(ω), and a ‘spin self-energy’, M(ω), which enters the dynamical
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Figure 1. Local QCP. The RKKY interaction I ≡ T 0
K δ is tuned as the bare Kondo scale T 0

K
is kept fixed. The local susceptibility is Pauli below E∗

loc , Curie above T 0, and logarithmic (cf
equation (5)) in the quantum critical (QC) regime.

spin susceptibility as follows [21]

χ(q, ω) = 1

Iq + M(ω)
(3)

where Iq is the spatial Fourier transform of Ii j . The key advantage of the approach is that here
spin damping is no longer assumed to be due to a decay into quasiparticle–quasihole pairs.
(Such an assumption is inherent in the paramagnon approach, and is responsible for a linear
ω-dependence for M(ω)—cf equation (1).) The approach sets out to also determine whether
the fermionic excitations at the QCP retain the heavy-quasiparticle character. Within EDMFT,
the lattice model is studied through a self-consistent impurity model, the Bose–Fermi Kondo
model:

Himp = JK S · sc +
∑

p,σ

E pc†
pσ cpσ + gS ·

∑

p

(φp + φ†
−p) +

∑

p

wpφ
†
p · φp (4)

where g, E p, and wp are determined self-consistently [12], and φp describes a fluctuating
magnetic field.

3. Local quantum critical point

We find two types of QCP [12]. The more exotic type is the LQCP, as illustrated in figure 1.
Here, the local energy scale, E∗

loc, vanishes at the QCP. The local Kondo physics is itself
critical, and this criticality is embedded in the criticality (i.e. an infinite spatial correlation
length) associated with the magnetic ordering transition.

Corresponding to the vanishing E∗
loc is a divergent local (i.e., the q-averaged) susceptibility.

The specific form of the divergence is logarithmic:

χloc(ω) = 1

2�
ln

�

−iω
(5)

where � ≈ T 0
K . The spin self-energy is

M(ω) ≈ −IQ + A(−iω)α. (6)
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Here, IQ is the value of Iq at the ordering wavevector q = Q, and the exponent is given by

α = 1

2ρI (IQ)�
(7)

where ρI (IQ) is the ‘RKKY density of states’, ρI (ε) ≡ ∑
q δ(ε − Iq) at ε = IQ.

Viewed from the effective local Kondo model,equation (4), the vanishing E∗
loc corresponds

to placing this local problem on its critical manifold (a separatrix in the JK –g parameter space).
Indeed, the LQCP was first found [12] using an ε ≡ 1 −γ expansion [23, 24] for equation (4),
along with the self-consistency conditions. Here γ is the exponent that characterizes the
spectrum of the fluctuating magnetic field:

∑
p[δ(ω − wp) − δ(ω + wp)] ∼ |ω|γ sgn ω. The

effects of spin anisotropy (XY and Ising) have been treated in a similar fashion [17, 18].
More recently, numerical studies have been carried out [16] for the EDMFT equations in the
anisotropic Kondo lattice model, using a quantum Monte Carlo algorithm originally developed
by Grempel and Rozenberg [25]. The numerical results are consistent with the logarithmic
form for the singular local susceptibility at the LQCP (cf equation (5)). The numerical value
for the exponent α is about 0.7, close to what is seen experimentally for CeCu6−yAuy.

Since the peak susceptibility, χ(Q, ω), is divergent at the QCP, the basic condition for
realizing a LQCP is such that the q-averaged susceptibility diverges at the same point where
the peak susceptibility does. Two-dimensional magnetic fluctuations satisfy this condition. If
the magnetic fluctuations are purely three dimensional, and if there is no frustration, then E∗

loc
would be finite at the QCP corresponding to a crossover scale towards the eventual Gaussian
behaviour [12, 26]. We also note that our analysis applies provided that the T = 0 transition
is continuous. The latter can be explicitly checked by studying the EDMFT equations on the
ordered side (in the presence of a self-consistent static field); work along this direction is in
progress.

4. Robustness of the LQCP

On the basis of Ginzburg–Landau considerations [12], we have also argued that the LQCP
is robust beyond the microscopic EDMFT provided that α < 1. The key issue is whether
the local susceptibility at the QCP remains divergent when we allow a q-dependence in the
self-energies. Writing the general scaling form for the static spin susceptibility for q in the
vicinity of the ordering wavevector Q:

χ(q) ∼ 1

(q − Q)2−η
, (8)

the question becomes equivalent to whether the spatial anomalous dimension η remains equal
to zero: if it is, then the corresponding local susceptibility in two dimensions remains singular.
For α < 1, the non-linear couplings among the long-wavelength modes are irrelevant; their
contributions to the spin self-energy will contain a q-dependence that is at most (q − Q)2.
This, coupled with the fact that the contributions to the spin self-energy from the local modes
are expected to be smooth in q, leads to the conclusion that η = 0. The LQCP is therefore
internally consistent.

To reiterate, the tuning to the QC regime provides a robust mechanism for a singular local
susceptibility, which in turn places the local (Kondo) fluctuations exactly at its own criticality.

5. Quantum critical dynamics, Fermi surface properties, and experiments

We now turn to experimentally testable properties:
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• The dynamical spin susceptibility is

χ(q, ω) = 1

(Iq − IQ) + A(−iω)αW (ω/T )
. (9)

• The static uniform spin susceptibility has a modified Curie–Weiss form:

χ(T ) = 1

 + BT α
(10)

with exactly the same exponent as in equation (9).
• The NMR relaxation rate contains a temperature-independent component:

1

T1
∼ A2

h f

π

8�
. (11)

• The Fermi surface changes sharply at the QCP, from ‘large’ (volume (1 + x)) to ‘small’
(volume x and a different topology) as the system orders.

Equation (9) reproduces the form observed [9] in the inelastic neutron scattering
experiments on CeCu6−yAuy . In addition, the neutron results are consistent with two-
dimensional magnetic fluctuations [10].

Recently, NMR experiments have been carried out [27] on YbRh2Si2. The relaxation rate
1/T1 is strongly dependent on the magnetic field, in a way that appears consistent with B/T
scaling. Over the temperature range where the specific heat is logarithmic, (1/T1)B→0 does
contain a constant component.

Even more recently, NQR experiments have been carried out [37] at a Cu site in
CeCu6−yAuy . The relaxation rate has a non-Korringa temperature dependence; at low
temperatures 1/T1 ∼ T β , where the exponent β ≈ 0.75 is very close to the fractional
exponent α seen in the q-dependent dynamical spin susceptibility [9]. This result would be
consistent with the neutron scattering result if the hyperfine couplings between the Cu nuclei
and the f -electron spins at the Ce sites were such that the dominant contributions to 1/T1

came from generic wavevectors (wavevectors far away from the peak wavevectors). With this
assumption about the hyperfine coupling, the Cu-site NQR experiment confirms the existence
of the fractional exponent over an extended region of the Brillouin zone.

In addition to arising for CeCu6−yAuy, the modified Curie–Weiss form for the uniform
spin susceptibility, equation (10), has also been seen [5] for YbRh2Si2.

The Fermi surface reconstruction can be probed through de Haas–van Alphen experiments.
We are aware of one case, CeRh2Si2 (the quantum critical behaviour of which is not yet as well
characterized as for the other heavy fermions), for which such measurements do reveal a Fermi
surface reconstruction [28]. A less direct experimental signature is that the Hall coefficient
should jump as the system is tuned through the QCP [12, 29]; some preliminary indication of
such a behaviour has been found [30] in YbRh2Si2.

We make two remarks in passing. First, similar features in the dynamics (ω/T
scaling) [31, 32] and other properties [33, 34] occur for UCu5−x Pdx , raising the possibility
that a local criticality is also operating in these (strongly disordered and frustrated) systems.
Second, we have focused on the quantum critical physics associated with a transition between
paramagnetic and antiferromagnetic metals. Other phases, such as spin liquids [35, 36], may
also be relevant [14].

6. Concluding remarks

We have identified a local quantum critical metal, which is described on the basis of a non-
Gaussian fixed point. This picture provides a natural explanation for some most unusual
experiments on heavy-fermion metals in the vicinity of a magnetic QCP.
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The local QCP serves as a concrete example where fermions, instead of being bystanders,
directly participate in the critical behaviour. The Kondo resonances, which have the quantum
numbers of an electron and would turn the local moments into a part of the electron fluid,
become critical at the same point where a magnetic ordering sets in.

More generally, the local moment physics in Kondo systems is analogous to the Mott
phenomenon. The strong Coulomb interactions lead to a microscopic Coulomb blockade
or, equivalently, a projection onto a restricted Hilbert space. Such effects are assumed to
be inconsequential in the Gaussian quantum critical metal picture. On the other hand, and
reminiscent of what happens in the usual Mott transition, they play a central role for a local
quantum critical metal.
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and R E Walstedt—for discussions, and the NSF (grant No DMR-0090071), TcSAM, and the
Welch foundation for support.

References

[1] Panagopoulos C et al 2003 Solid State Commun. 126 47 and references therein
(Panagopoulos C et al 2002 Preprint cond-mat/0210363) and references therein
Tallon J L et al 1999 Phys. Status Solidi b 215 531
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